Facial Feature Tracking via Evolutionary Multiobjective Optimization

نویسندگان

  • Eric C. Larson
  • Gary G. Yen
چکیده

Facial feature tracking for model–based coding has evolved over the past decades. Of particular interest is its application in very low bit rate coding in which optimization is used to analyze head and shoulder sequences. We present the results of a computational experiment in which we apply a combination of non-dominated sorting genetic algorithm and a deterministic search to find optimal facial animation parameters at many bandwidths simultaneously. As objective functions are concerned, peak signal-to-noise ratio is maximized while the total number of facial animation parameters is minimized. Particularly, the algorithm is tested for efficiency and reliability. The results show that the overall methodology works effectively, but that a better error assessment function is needed for future study. DOI: 10.4018/jaec.2010010104 58 International Journal of Applied Evolutionary Computation, 1(1), 57-71, January-March 2010 Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. expression. Modern facial models can recreate a human likeness with remarkable clarity. Figure 1 shows three reconstructed facial models and the original frames. Using a model to transmit video opens the possibility for transmission using dynamic bandwidths (i.e., sending video at different bandwidths dynamically depending on the conditions of the transmission channel). In transform based coding, dynamic bandwidth means increasing or decreasing the compression thresholds, reducing video quality when the compression is high. In MBFC, dynamic bandwidth means sending a dynamic number of parameters of the face, resulting in less movement of the model at high compression but not necessarily less quality. This application promises to revolutionize video telephony and teleconferencing by drastically reducing the bandwidth required for transmission (Eisert, 2003). But there is no free lunch. The bandwidth reductions in MBFC must be paid for in computational analysis. Despite the advances in facial analysis, current work has been limited in several aspects. Before MBFC can be adequately implemented, the following factors need addressing: 1. The limitations of gradient-based optimization. This type of analysis, while showing promise for real-time implementation, inherently relies upon a gradient approximation. This approximation limits the problem scope to facial sequences involving movements built into the gradient approximation training (i.e., small head movements). 2. The use of static facial parameters. Current algorithms use a hand selected set of animation parameters on the face, or use all facial animation parameters. It is unclear if bandwidth could be further reduced using a dynamic set of animation parameters, or what the ideal set of parameters is that adequately represents all facial animation sequences. 3. The prohibitive use of computationally complex algorithms. The use of direct methods to analyze head and shoulder sequences in real time has been completed only by reducing the number of animation parameters optimized. The resultant frames are not considered high enough quality to be realistically rendered. In this article, we address all of the stated concerns by formulating the analysis and synthesis into a multiobjective optimization problem (MOP). In short, we want to design a facial coder that simultaneously finds a high Figure 1. Selected frames of a model-based video. Top: the original video frames. Bottom: frames synthesized from a model based coder. The frames are generated using a facial model; they are rendered sequences derived from stretching a facial “texture” over the three dimensional facial wireframe. See (Eisert, 2000). 13 more pages are available in the full version of this document, which may be purchased using the "Add to Cart" button on the product's webpage: www.igi-global.com/article/facial-feature-tracking-viaevolutionary/40904?camid=4v1 This title is available in InfoSci-Journals, InfoSci-Journal Disciplines Computer Science, Security, and Information Technology. Recommend this product to your librarian: www.igi-global.com/e-resources/libraryrecommendation/?id=2

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems

Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...

متن کامل

Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model

Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...

متن کامل

Transfer Learning based Dynamic Multiobjective Optimization Algorithms

One of the major distinguishing features of the dynamic multiobjective optimization problems (DMOPs) is the optimization objectives will change over time, thus tracking the varying Pareto-optimal front becomes a challenge. One of the promising solutions is reusing the “experiences” to construct a prediction model via statistical machine learning approaches. However most of the existing methods ...

متن کامل

Solving Multiobjective Optimization Problems using Evolutionary Algorithm

Being capable of finding a set of pareto–optimal solutions in a single run, which is a necessary feature for multi–criteria decision making, Evolutionary Algorithms (EAs) has attracted many researchers and practitioners to address the solution of Multiobjective Optimization Problems (MOPs). In a previous work, we developed a Pareto Differential Evolution (PDE) algorithm to handle multiobjective...

متن کامل

Tracking of Facial Feature Points by Combining Singular Tracking Results with a 3D Active Shape Model

Accurate 3D tracking of facial feature points from one monocular video sequence is appealing for many applications in human-machine interaction. In this work facial feature points are tracked with a Kanade-LucasTomasi (KLT) feature tracker and the tracking results are linked with a 3D Active Shape Model (ASM). Thus, the efficient Gauss-Newton method is not solving for the shift of each facial f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJAEC

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010